Edge-symmetric Orientable Imbeddings of Complete Graphs
نویسندگان
چکیده
منابع مشابه
Orientable Step Domination of Complete r-Partite Graphs
This paper provides lower orientable k-step domination number and upper orientable k-step domination number of complete r-partite graph for 1 ≤ k ≤ 2. It also proves that the intermediate value theorem holds for the complete r-partite graphs.
متن کاملextreme edge-friendly indices of complete bipartite graphs
let g=(v,e) be a simple graph. an edge labeling f:e to {0,1} induces a vertex labeling f^+:v to z_2 defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where z_2={0,1} is the additive group of order 2. for $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. a labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. i_f(g)=v_f(1)-v_f(0) is called the edge-f...
متن کاملTriangulations of orientable surfaces by complete tripartite graphs
Orientable triangular embeddings of the complete tripartite graph Kn,n,n correspond to biembeddings of Latin squares. We show that if n is prime there are at least e ln n−n(1+o(1)) nonisomorphic biembeddings of cyclic Latin squares of order n. If n = kp, where p is a large prime number, then the number of nonisomorphic biembeddings of cyclic Latin squares of order n is at least e ln p−p(1+ln . ...
متن کاملThe orientable genus of certain complete tripartite graphs
In 1969, White conjectured that the orientable genus of the complete tripartite graph Kl,m,n, with l ≥ m ≥ n, is ⌈ (l−2)(m+n−2) 4 ⌉ . In this talk we describe progress on this conjecture. We can show that White’s conjecture is true in the cases where (m, n), reduced modulo 4, is (0, 0), (0, 2), (1, 1), (2, 0), (2, 1), (2, 2), (2, 3) or (3, 3). We discuss similarities and differences between our...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 1990
ISSN: 0195-6698
DOI: 10.1016/s0195-6698(13)80067-4